

Documentation

	Overview of Cortexpy
	Audience

	Free software

	Installation

	Documentation

	Citing cortexpy

	Bugs

	Development

	Tutorial
	Using the python API to filter Cortex graphs

	On link-informed graph traversal
	Link-informed graph traversal in cortexpy

	API reference
	Random access of Cortex graphs

	Cortex graph headers

	Cortex kmers

	Link-informed graph traversal

	Representing Cortex graphs as nx.Graph objects

	Interacting with graphs

	Utility functions

	License

Indices and tables

	Index

	Module Index

	Search Page

Overview of Cortexpy [https://github.com/winni2k/cortexpy]

	tests

	
[image: Travis-CI Build Status] [https://travis-ci.org/winni2k/cortexpy] [image: Coverage Status] [https://codecov.io/github/winni2k/cortexpy]

	package

	
[image: PyPI Package latest release] [https://pypi.python.org/pypi/cortexpy] [image: PyPI Wheel] [https://pypi.python.org/pypi/cortexpy] [image: Supported versions] [https://pypi.python.org/pypi/cortexpy]

[image: Supported implementations] [https://pypi.python.org/pypi/cortexpy] [image: Commits since latest release] [https://github.com/winni2k/cortexpy/compare/v0.46.5...master]

	docs

	
[image: Documentation Status] [https://cortexpy.readthedocs.io/en/latest/?badge=latest]

Cortexpy is a Python package for sequence analysis using linked and colored De Bruijn graphs such as
the ones created by Cortex [https://github.com/iqbal-lab/cortex] and Mccortex [https://github.com/mcveanlab/mccortex].
This project aims to mirror many of the features contained in
CortexJDK [https://github.com/mcveanlab/CortexJDK].

Cortexpy also comes with a command-line tool for basic inspection and manipulation of Cortex graphs with and without links.

Audience

The audience of cortexpy is researchers working with colored De Bruijn graphs and link information in Cortex [https://github.com/iqbal-lab/cortex] and Mccortex [https://github.com/mcveanlab/mccortex] format.

Free software

Cortexpy is free software; you can redistribute it and/or modify it under the
terms of the Apache License version 2.0. Contributions are welcome. Please join us on GitHub [https://github.com/winni2k/cortexpy].

Installation

pip install cortexpy

Documentation

For more information, please see cortexpy documentation [https://cortexpy.readthedocs.io/en/latest/index.html].

Citing cortexpy

If you use cortexpy in your work, please consider citing:

Akhter, Shirin, Warren W. Kretzschmar, Veronika Nordal, Nicolas Delhomme, Nathaniel R. Street, Ove Nilsson, Olof Emanuelsson, and Jens F. Sundström. “Integrative analysis of three RNA sequencing methods identifies mutually exclusive exons of MADS-box isoforms during early bud development in Picea abies.” Frontiers in Plant Science 9 (2018). https://doi.org/10.3389/fpls.2018.01625

Bugs

This code is maintained by Warren Kretzschmar <winni@warrenwk.com>.
For bugs, please raise a GitHub issue [https://github.com/winni2k/cortexpy/issues].

Development

	Install conda [https://docs.conda.io/en/latest/miniconda.html].

	Download mccortex for testing:

conda env create -f environment.yml -n my-dev-environment

	Activate development environment:

conda activate my-dev-environment

	Install remaining development tools:

pip3 install -r requirements.txt

All remaining commands in the development section need to be run in an activated
conda dev environment.

Tests

make test

Deploy new cortexpy version to pypi

Requires access credentials for pypi.

make deploy

Building the docs

The documentation is automatically built by read-the-docs on push to master.
To build the documentation manually:

install sphinx dependencies
pip install -r docs/requirements.txt

make docs

Tutorial

The cortexpy package consists of a python API and a command-line tool for working with Cortex graphs.
Below, we start by looking at how to use the python API to perform an example workflow.

Using the python API to filter Cortex graphs

Building Cortex files

Let’s start by by creating two Cortex files to work with. At present, cortexpy does not provide a way
to easily create a Cortex file, so we will instead use Mccortex [https://github.com/mcveanlab/mccortex]. Mccortex can be compiled from source
or installed using bioconda [https://bioconda.github.io/recipes/mccortex/README.html].

Let’s start by creating two FASTA files from which to create two Cortex files:

echo -e '>1\nAAAAA' > file1.fasta
echo -e '>1\nCCCCC' > file2.fasta

We now have two FASTA files each containing a single sequence. We can now build a Cortex graph
from each file. We choose to use a kmer-size of 5:

mccortex 5 build --sort -k 5 --sample file1 -1 file1.fasta file1.ctx
mccortex 5 build --sort -k 5 --sample file2 -1 file2.fasta file2.ctx

We now have two cortex files: file1.ctx and file2.ctx. As the Cortex format represents
colored De Bruijn graphs, we could have stored the information from the two FASTA files in a single
graph as two separate colors. However, we are creating two files in order to demonstrate the
cortexpy API later on.

We can check what kmers are stored in each graph using the cortexpy command-line tool:

> cortexpy view graph file1.ctx
AAAAA 1

> cortexpy view graph file2.ctx
CCCCC 1

This output tells us that each graph consists of a single kmer with coverage 1.

Inspecting Cortex graphs in Python

Cortexpy offers many ways to inspect Cortex files. Much of that functionality is available through
the RandomAccess class. Let us start by loading a Cortex file inside python:

>>> from cortexpy.graph.parser.random_access import RandomAccess
>>> # make sure to open the cortex graph in binary mode
>>> ra = RandomAccess(open('file1.ctx', 'rb'))

We can now interrogate the ra object. Let’s see what the header size of the Cortex file is:

>>> ra.header.kmer_size
5

Let’s check if the kmer AAAAA exists in the graph and retrieve it:

>>> 'AAAAA' in ra
True
>>> ra['AAAAA']
Kmer(_kmer_data=KmerData(_data=b'\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00', kmer_size=5, num_colors=1, _kmer='AAAAA', _coverage=None, _edges=None), num_colors=1, kmer_size=5, _revcomp=None)

We can see that the returned kmer object contains information on the kmer size (5) and the number of colors stored in the kmer (1).

Now let’s put it all together and search both graphs that we created while Building Cortex files for our kmer of interest, AAAAA:

search.py

 from cortexpy.graph.parser.random_access import RandomAccess

 for graph in ['file1.ctx', 'file2.ctx']:
 # make sure to open the cortex graph in binary mode
 with open(graph, 'rb') as fh:
 ra = RandomAccess(fh)

 # let's see if our favorite kmer is in the graph
 if 'AAAAA' in ra:
 print(f'AAAAA exists in {graph}!')

This is what we see if we run this code from the command line:

> python3 search.py
AAAAA exists in file1.ctx!

On link-informed graph traversal

The all-simple-paths algorithm as implemented in nx.all_simple_paths() inside the
networkx (abbreviated below as nx) package version 2.2 uses a
depth-first traversal scheme to find all possible paths from a start node to one or more
end nodes 1.

For example, let nodes A-F represent unitigs in a De Bruijn graph created from sequencing
reads of transcripts:

 graph LR;
 A-->B
 A-->C
 B-->D
 C-->D
 D-->E
 D-->F

An all-simple-paths traversal starting at A will return the paths ABDE, ABDF, ACDE,
and ACDF. However, what if the sequenced reads that were used to create this graph only
originated from two paths: ABDE and
ACDF? Can some of these sequencing reads be used to restrict the paths returned by the
all-simple-paths algorithm?

Mccortex [https://github.com/mcveanlab/mccortex] provides a data structure called “links [https://github.com/mcveanlab/mccortex/wiki/Graph-links]” for annotating De Bruijn graphs in Cortex [https://github.com/iqbal-lab/cortex]
format. In the example above, links can be used to store information on a read that covers both the
A –> B and D –> E junctions. Cortexpy can use these links to performed a
“link-informed” (that is, a restricted) all-simple-paths traversal.

	1

	Cortexpy currently uses a copy of nx.all_simple_paths()
named _all_simple_paths_graph().

Link-informed graph traversal in cortexpy

Cortexpy uses networkx algorithms

Cortexpy represents Cortex graphs as nx.DiGraph objects 2. This
allows the easy application of networkx algorithms to Cortex graphs.
cortexpy achieves link-informed traversal by wrapping a Cortex graph in a
LinkedGraphTraverser object, which modifies the behavior of the
__getitem__() method. To understand why this works, let us first take a look at the
all-simple-paths algorithm:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 def _all_simple_paths_graph(G, source, targets, cutoff):
 """From networkx.algorithms.simple_paths"""
 visited = collections.OrderedDict.fromkeys([source])
 stack = [iter(G[source])]
 while stack:
 children = stack[-1]
 child = next(children, None)
 if child is None:
 stack.pop()
 visited.popitem()
 elif len(visited) < cutoff:
 if child in visited:
 continue
 if child in targets:
 yield list(visited) + [child]
 visited[child] = None
 if targets - set(visited.keys()): # expand stack until find all targets
 stack.append(iter(G[child]))
 else:
 visited.popitem() # maybe other ways to child
 else: # len(visited) == cutoff:
 for target in (targets & (set(children) | {child})) - set(visited.keys()):
 yield list(visited) + [target]
 stack.pop()
 visited.popitem()

The key line here is the highlighted line 18. This is the line that appends an iterator of a node’s
successors to the stack of nodes to visit. The algorithm asks the graph object G
for the successor nodes of child by calling the
__getitem__() method of G:

G[child]

This means that we can restrict the paths returned by _all_simple_paths_graph() by
restricting the successor nodes returned by G.

	2

	The implementation is not perfect and could use some improvement.

LinkedGraphTraverser restricts simple paths using links

The __getitem__() method of
LinkedGraphTraverser restricts the returned
successors using the following rules:

	If no link information exists for the query node, then return all successors.

	Otherwise, return only successors that are consistent with the links encountered on the path from
start to query node.

	If the query node is annotated with links, pick up all links.

	For each successor node, only retain links that are consistent with the path taken from the start
to this successor node.

	For each successor node, drop links that are no longer relevant to the successor node
(i.e. links that have expired)

API reference

Random access of Cortex graphs

This module contains classes for inspecting Cortex graphs with random access to their kmers.

	
class cortexpy.graph.parser.random_access.RandomAccess(graph_handle, kmer_cache_size=None)

	Provide fast k-mer access to Cortex graph in log(n) time (n = number of kmers in graph)

	
__getitem__(lexlo_string)

	Return kmer associated with kmer string

No check is performed to make sure that the input string is a lexicographically-lowest
kmer string. Use get_kmer_for_string() in order to convert a kmer string to its lexlo
form before retrieving it from the cortex object.

	
__iter__()

	Iterate over kmer strings in graph in order stored in graph

	
get_kmer_for_string(string)

	Will compute the revcomp of kmer string before getting a kmer

	
items()

	Iterate over kmer strings and kmers in graph in order stored in graph

	
values()

	Iterate over kmers in cortex graph

Cortex graph headers

This module contains classes for parsing and representing a Cortex file header

	
class cortexpy.graph.parser.header.Header(version=6, kmer_size=1, kmer_container_size=None, num_colors=None, mean_read_lengths=None, total_sequences=None, sample_names=None, error_rates=None, color_info_blocks=NOTHING)

	Cortex header object

This object allows access to header information contained in a cortex file

	
classmethod from_stream(stream)

	Extract a cortex header from a file handle

Cortex kmers

This module provides classes and functions for working with Cortex kmers.

	
class cortexpy.graph.parser.kmer.Kmer(kmer_data, num_colors, kmer_size, revcomp=None)

	Represents a Cortex kmer

This class wraps a kmer data object with attributes and methods for inspecting and manipulating
the underlying kmer data object.

	
increment_color_coverage(color)

	Increment the coverage of a color by one

	
class cortexpy.graph.parser.kmer.StringKmerConverter(kmer_size)

	Converts kmer strings to various binary representations

	
to_uints(kmer_string)

	Converts kmer_string to big-endian uint64 array

	
cortexpy.graph.parser.kmer.connect_kmers(first, second, color, identical_kmer_check=True)

	Connect two kmers

	
cortexpy.graph.parser.kmer.disconnect_kmers(first, second, colors)

	Disconnect two kmers

	
cortexpy.graph.parser.kmer.find_all_neighbors(first, second)

	Return kmers and letters to get from first kmer to second

Link-informed graph traversal

This module provides classes for parsing Mccortex link files and for traversing graphs while using
links.

	
class cortexpy.links.LinkOrientation

	An enumeration.

	
class cortexpy.links.LinkWalker(links, junctions)

	Manages the loading and walking of links for kmers

	
choose_branch(base)

	Choose a branch and advance all links. Keep only links consistent with branch.

	
load_kmer(kmer)

	Load the link group for a kmer in the orientation of the kmer.

	
next_junction_bases()

	Returns the the bases of the branches that can be chosen.

	
class cortexpy.links.LinkedGraphTraverser(graph, walkers=NOTHING)

	Adapter for linked walkers to be able to work with nx.all_simple_paths()

	
class cortexpy.links.UnitigLinkWalker(link_walker, unitigs, kmer_size, current_unitig)

	Traverses a unitig graph with links

	
choose(successor)

	Register the choice of a successor and advance

	
link_successors()

	Only returns unitigs based on link information

	
successors()

	Returns nodes from links or all available junctions if no link info exists

	
class cortexpy.links.LinkedGraphTraverser(graph, walkers=NOTHING)

	Adapter for linked walkers to be able to work with nx.all_simple_paths()

	
__getitem__(item)

	Get the children of item according to the walker object associated with
item

Warning: This scheme only works with depth-first search.

Representing Cortex graphs as nx.Graph objects

This module contains classes for representing Cortex graphs as
objects that are compatible with networkx algorithms.

todo: Simplify the Graph implementations

	
class cortexpy.graph.cortex.ConsistentCortexDiGraph(kmer_mapping=NOTHING, graph=NOTHING)

	Graph that stores kmer strings that are consistent with each other

	
class cortexpy.graph.cortex.CortexDiGraph(kmer_mapping=NOTHING, graph=NOTHING)

	Stores cortex k-mers and conforms to parts of the interface of nx.MultiDiGraph

	
add_edge(first, second, *, key)

	Note: edges can only be added to existing nodes

	
nbunch_iter(nbunch=None)

	Return an iterator over nodes contained in nbunch that are
also in the graph.

This code has been copied from networkx.

The nodes in nbunch are checked for membership in the graph
and if not are silently ignored.

	Parameters

	nbunch (single node, container, or all nodes (default= all nodes)) – The view will only report edges incident to these nodes.

	Returns

	niter – An iterator over nodes in nbunch that are also in the graph.
If nbunch is None, iterate over all nodes in the graph.

	Return type

	iterator

	Raises

	NetworkXError – If nbunch is not a node or or sequence of nodes.
If a node in nbunch is not hashable.

See also

Graph.__iter__()

Notes

When nbunch is an iterator, the returned iterator yields values
directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use
“if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator
or None, a NetworkXError is raised. Also, if any object in
nbunch is not hashable, a NetworkXError is raised.

This method was copied from Networkx version 2.1 and then modified

	
class cortexpy.graph.cortex.CortexGraphMapping(ra_parser, exclusion_set=NOTHING, new_kmers=NOTHING, n_duplicates=0)

	Create a dict-like kmer mapping from a RandomAccess parser (ra_parser)

The exclusion set tracks kmers deleted from the ra_parser.
The new_kmers track kmers that have been added to the mapping.
Kmers that exist in both new_kmers and ra_parser are considered overwritten. The kmers in
new_kmers have precedence.

	
connect_kmers(first, second, color, identical_kmer_check=True)

	Connect two kmers

	
disconnect_kmers(first, second, colors)

	Disconnect two kmers

	
cortexpy.graph.cortex.build_cortex_graph(*, sample_names, kmer_size, num_colors, colors, kmer_generator=None, kmer_mapping=None)

	Colored de Bruijn graph constructor

	
cortexpy.graph.cortex.get_canonical_edge(first, second)

	Get canonical edge.

Canonical edges are between lexlo kmers and are ordered lexicographically

Return canonical edge, if the first and second nodes were lexlo

Interacting with graphs

This module contains classes and functions for inspecting, manipulating, and traversing graphs

	
class cortexpy.graph.interactor.SeedKmerStringIterator(seed_kmer_strings, unseen_lexlo_kmer_strings, seen_lexlo_kmer_strings=NOTHING)

	Iterates seeds and their lexlo representations that exist in the supplied all_kmers:

>>> list(SeedKmerStringIterator.from_all_kmer_strings_and_seeds(['AAC'], ['GTT']))
[('GTT', 'AAC')]

Kmers that are not in the seed list are return after that:

>>> list(SeedKmerStringIterator.from_all_kmer_strings_and_seeds(['AAA', 'AAC'], ['GTT']))
[('GTT', 'AAC'), ('AAA', 'AAA')]

Seeds that do not exist in the all_kmers are not returned.

>>> list(SeedKmerStringIterator.from_all_kmer_strings_and_seeds([], ['CCC']))
[]

Returned kmers from all_kmers list are returned in order.

>>> list(SeedKmerStringIterator.from_all_kmer_strings_and_seeds(['AAA', 'AAG', 'AAC'], []))
[('AAA', 'AAA'), ('AAG', 'AAG'), ('AAC', 'AAC')]

	
cortexpy.graph.interactor.edge_nodes_of(graph)

	Find all edge nodes of a graph

Second return value is direction of edge.

	
cortexpy.graph.interactor.make_copy_of_color_for_kmer_graph(graph, color, include_self_refs=False)

	Makes a copy of graph, but only copies over links with key=color.
Only copies over nodes that are linked by a link with key=color.

Utility functions

This module contains utility functions that are used inside cortexpy.
These functions may also be useful outside of cortexpy.

	
cortexpy.utils.kmerize_contig(contig, kmer_size)

	Return generator of kmers in contig

The returned kmers are not lexicographically lowest.

>>> list(kmerize_contig('ATTT', 3))
['ATT', 'TTT']

	
cortexpy.utils.kmerize_fasta(fasta, kmer_size)

	Return generator to all kmers in fasta

	
cortexpy.utils.lexlo

	Return lexicographically lowest version of a kmer string and its reverse complement

The reverse complement of a kmer string is generated and the lexicographically-lowest
kmer string is returned.

>>> lexlo('AAA')
'AAA'

>>> lexlo('TTT')
'AAA'

License

Cortexpy is distributed under the Apache Lincense version 2.0:

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cortexpy	

 	
 	
 cortexpy.graph.cortex	

 	
 	
 cortexpy.graph.interactor	

 	
 	
 cortexpy.graph.parser.header	

 	
 	
 cortexpy.graph.parser.kmer	

 	
 	
 cortexpy.graph.parser.random_access	

 	
 	
 cortexpy.links	

 	
 	
 cortexpy.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | R
 | S
 | T
 | U
 | V

_

 	
 	__getitem__() (cortexpy.graph.parser.random_access.RandomAccess method)

 	(cortexpy.links.LinkedGraphTraverser method)

 	
 	__iter__() (cortexpy.graph.parser.random_access.RandomAccess method)

A

 	
 	add_edge() (cortexpy.graph.cortex.CortexDiGraph method)

B

 	
 	build_cortex_graph() (in module cortexpy.graph.cortex)

C

 	
 	choose() (cortexpy.links.UnitigLinkWalker method)

 	choose_branch() (cortexpy.links.LinkWalker method)

 	connect_kmers() (cortexpy.graph.cortex.CortexGraphMapping method)

 	(in module cortexpy.graph.parser.kmer)

 	ConsistentCortexDiGraph (class in cortexpy.graph.cortex)

 	CortexDiGraph (class in cortexpy.graph.cortex)

 	CortexGraphMapping (class in cortexpy.graph.cortex)

 	
 	cortexpy.graph.cortex (module)

 	cortexpy.graph.interactor (module)

 	cortexpy.graph.parser.header (module)

 	cortexpy.graph.parser.kmer (module)

 	cortexpy.graph.parser.random_access (module)

 	cortexpy.links (module)

 	cortexpy.utils (module)

D

 	
 	disconnect_kmers() (cortexpy.graph.cortex.CortexGraphMapping method)

 	(in module cortexpy.graph.parser.kmer)

E

 	
 	edge_nodes_of() (in module cortexpy.graph.interactor)

F

 	
 	find_all_neighbors() (in module cortexpy.graph.parser.kmer)

 	
 	from_stream() (cortexpy.graph.parser.header.Header class method)

G

 	
 	get_canonical_edge() (in module cortexpy.graph.cortex)

 	
 	get_kmer_for_string() (cortexpy.graph.parser.random_access.RandomAccess method)

H

 	
 	Header (class in cortexpy.graph.parser.header)

I

 	
 	increment_color_coverage() (cortexpy.graph.parser.kmer.Kmer method)

 	
 	items() (cortexpy.graph.parser.random_access.RandomAccess method)

K

 	
 	Kmer (class in cortexpy.graph.parser.kmer)

 	
 	kmerize_contig() (in module cortexpy.utils)

 	kmerize_fasta() (in module cortexpy.utils)

L

 	
 	lexlo (in module cortexpy.utils)

 	link_successors() (cortexpy.links.UnitigLinkWalker method)

 	LinkedGraphTraverser (class in cortexpy.links), [1]

 	
 	LinkOrientation (class in cortexpy.links)

 	LinkWalker (class in cortexpy.links)

 	load_kmer() (cortexpy.links.LinkWalker method)

M

 	
 	make_copy_of_color_for_kmer_graph() (in module cortexpy.graph.interactor)

N

 	
 	nbunch_iter() (cortexpy.graph.cortex.CortexDiGraph method)

 	
 	next_junction_bases() (cortexpy.links.LinkWalker method)

R

 	
 	RandomAccess (class in cortexpy.graph.parser.random_access)

S

 	
 	SeedKmerStringIterator (class in cortexpy.graph.interactor)

 	
 	StringKmerConverter (class in cortexpy.graph.parser.kmer)

 	successors() (cortexpy.links.UnitigLinkWalker method)

T

 	
 	to_uints() (cortexpy.graph.parser.kmer.StringKmerConverter method)

U

 	
 	UnitigLinkWalker (class in cortexpy.links)

V

 	
 	values() (cortexpy.graph.parser.random_access.RandomAccess method)

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Documentation

 		
 Overview of Cortexpy

 		
 Audience

 		
 Free software

 		
 Installation

 		
 Documentation

 		
 Citing cortexpy

 		
 Bugs

 		
 Development

 		
 Tests

 		
 Deploy new cortexpy version to pypi

 		
 Building the docs

 		
 Tutorial

 		
 Using the python API to filter Cortex graphs

 		
 Building Cortex files

 		
 Inspecting Cortex graphs in Python

 		
 On link-informed graph traversal

 		
 Link-informed graph traversal in cortexpy

 		
 Cortexpy uses networkx algorithms

 		
 LinkedGraphTraverser restricts simple paths using links

 		
 API reference

 		
 Random access of Cortex graphs

 		
 Cortex graph headers

 		
 Cortex kmers

 		
 Link-informed graph traversal

 		
 Representing Cortex graphs as nx.Graph objects

 		
 Interacting with graphs

 		
 Utility functions

 		
 License

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

